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Abstract: The increasing penetration of renewable sources in electricity grids has motivated
interest in controlling loads to compensate for variability of these generation sources. Air
conditioners (ACs) are one type of loads that can be effectively controlled by broadcasting
temperature setpoint offsets and using measurements of aggregate power demand for feedback, as
shown in recent works. While such control approach can arbitrarily shape demand, it does so at
the expense of end-use comfort, which may be a deterrent to participation in such programmes.
This paper explores the use of an alternative to setpoint offsets to shape aggregate demand of
ACs without violating end-use comfort levels. The proposed control consists in manipulating the
width of the ACs’ temperature regulation bands by raising the low temperature limit (or lowering
the high temperature limit) to change aggregate demand while keeping AC temperatures within
the specified ranges. We develop a deterministic mathematical model for the AC aggregate
demand response to changes in the new proposed control input, and numerically validate it
against a simulated population of ACs. The resulting model is amenable to systematic analysis
and design for direct load control with guaranteed comfort margins. We illustrate this point by
deriving a theoretical upper bound on the maximum energy that may be released from a given
population of ACs controlled using the proposed control input.

1. INTRODUCTION

Electric loads such as air conditioners (ACs) and other
thermostatically-controlled loads (TCLs) are suitable for
direct load control at the residential level due to two
main characteristics. Firstly, thanks to the intrinsic ther-
mal inertia of the AC spaces, brief perturbations to the
ACs steady state operation can be made with small or
no measurable impact to comfort levels. Secondly, these
loads can generate a rapid collective response to simple
external control signals, such as the introduction of small
temperature setpoint offsets, used by utilities in thermo-
stat setback load control programs (Callaway and Hiskens,
2011). Direct load control (DLC) of ACs can effectively
provide energy services such as load shifting to reduce
peaks in demand, and load following to mitigate high
variability in renewable energy generation (Callaway, 2009;
Hughes, 2010; Perfumo et al., 2012; Bashash and Fathy,
2013; Zhang et al., 2013; Braslavsky et al., 2013).

The introduction of small offsets in temperature setpoints
is simple to implement and can achieve tight control
of the aggregate demand of AC populations. However,
with this approach demand control comes at the expense
of user comfort, which, while it may be moderated by
careful monitoring, could be a deterrent to participation
in programmes implementing such DLC strategy.

This paper investigates an alternative to shape aggre-
gate power demand in populations of ACs without affect-

ing end-use comfort. The proposed control manipulates
the width of the ACs temperature regulation deadbands
(centred around temperature setpoints) by independently
shifting its boundaries while keeping temperatures within
the original limits. Naturally, the extent to which the
proposed manipulated variable can shift aggregate demand
is limited by the widths of the regulation bands and their
minimum admissible values to avoid equipment damage.
Provided such limits are respected, the proposed control
input opens a new avenue for model-based DLC design
with guaranteed margins of end-use performance.

Our main technical contribution is a mathematical model
for the dynamic aggregate demand response of a popu-
lation of ACs to one-sided step changes to temperature
regulation bands. This model extends a model introduced
in Perfumo et al. (2012) to incorporate the new proposed
control input. The model is a second-order linear time
invariant approximation of the response, which, as that
in Perfumo et al. (2012), is analytically parametrized by
the distributed physical characteristics of the population.
In contrast to the model obtained in Perfumo et al. (2012),
however, the present model is nonlinear in the new control
input. These nonlinearities, however, are tractable and
amenable to control analysis and design techniques for the
range of input values of practical relevance. We illustrate
the latter point by computing a theoretical upper bound
on the maximum amount of energy that may be released
by DLC of a population of ACs without violating user-



specified comfort levels when the proposed control input
is applied. The proposed model is validated for a range of
admissible input values against responses of a simulated
heterogeneous population of 10,000 ACs.

An alternative to achieve DLC of TCLs with no impact to
end-use performance is introduced in Li et al. (2010) as a
decentralised control algorithm where each device plans its
own cooling/heating cycling sequence so that the tempera-
ture is maintained within a specified band. The aggregate
power consumption is adjusted to a centrally broadcast
cap. In comparison to the approach in the present paper,
the decentralised scheme in Li et al. (2010) requires the
ACs to have two-way communications to adjust their plan-
ning in real-time, while our controller can be implemented
over one-way communications using feedback from feeder
measurements Braslavsky et al. (2013).

Furthermore, a centralised DLC approach in Zhang et al.
(2013) shows how nondisruptive peak shaving can be ob-
tained via a probabilistic control signal numerically com-
puted by inverting an accurate model of the population
aggregate demand response. While such model accounts
for compressor delays and detailed thermal dynamics (ne-
glected in the present paper), it comprises potentially hun-
dreds of states, which makes the mathematical analysis of
transient responses more challenging. The model proposed
in the present paper is of order two and yet it captures
the essential aggregate dynamics required for accurate
transient analysis and DLC using simple controllers that
can be systematically tuned.

2. SYSTEM AND PRELIMINARY ANALYSIS

We now define the system under consideration, namely a
population of ACs that independently regulate their tem-
peratures using thermostat-based on-off controllers. We
consider a DLC strategy based on manipulating the width
of the thermostat deadbands as a means to control aggre-
gate demand, assuming that the upper and lower limits of
the deadbands may be independently changed in real time.
We show how small offsets to these values changes can be
effective in manipulating aggregate demand while keeping
end-use function within the specified temperature limits,
in contrast with control strategies based on introducing
temperature setpoint offsets (e.g. Callaway, 2009; Bashash
and Fathy, 2013; Perfumo et al., 2012; Mathieu et al.,
2013), where DLC comes at the expense of shifting defined
end-use comfort constraints.

The dynamics of each AC operating independently in the
population may be described by the differential equation
with switching feedback (e.g., Ihara and Schweppe, 1981)

θ̇i(t) = −(CiRi)
−1 [θi(t)− θa +mi(t)RiPi + w(t)] (1)

mi(t
+) =







0 if θi(t) ≤ θ− + α(t)

1 if θi(t) ≥ θ+ + β(t)

mi(t) otherwise,

(2)

where the continuous state θi(t) is the regulated temper-
ature for the i-th AC, i ∈ {1, 2, . . . , n}, and the discrete
state mi(t) is the state of its relay, which switches the
compressor on and off with the hysteretic control rule (2).
The inputs α(t) and β(t) are the proposed offsets to the
lower and upper limits of the relay deadband.

The relay control law (2) maintains the temperature θi(t)
oscillating within the hysteresis deadband [θ−+α(t), θ++
β(t)] with a period that is a function of the width of
this deadband, the thermal capacitance (kWh/◦ C) and
thermal resistance (oC/kW) of the room, Ci and Ri, and
the thermal power Pi (kW) of the AC. The input w(t) is
a random variable representing thermal disturbances.

The normalised aggregate demand D(t) of a population of
n ACs independently operating with the dynamics (1)-(2)
is given by the ratio

D(t) =

∑n
i=1 mi(t)

Pi

COPi
∑n

i=1
Pi

COPi

, (3)

where COPi is the coefficient of performance of the ith
AC. The COP is in general a function of the difference
θa − θi(t), but for simplicity will be assumed constant
in this paper. The normalising factor

∑n
i=1

Pi

COPi

in (3)
represents the maximum demand when all the ACs have
their compressors switched on. This is the maximum power
that could be shed from the population by DLC.

Equation (3) may be used to study aggregate demand
dynamics numerically, assuming the distributed parame-
ters Ci, Ri, Pi are known. By simulating an array of n
independent sets of Equations (1)-(2) coupled by Equa-
tion (3) one can analyse the effects of ambient tempera-
ture, parameter distribution, and changes in temperature
set-points (Perfumo et al., 2013). We use such approach
to numerically validate the proposed reduced-order model
on a simulated population of 10,000 ACs with distributed
parameters randomly sampled according to Table 1.

Table 1. Simulation parameters.

Parameter Mean value Description

R 2 ◦C/kW Thermal resistance (log-normally
distributed).

C 3.6 kWh/◦C Thermal capacitance (log-normally
distributed).

P 6 kW Thermal power (log-normally dis-
tributed).

θ− 19.5 ◦C Lower end of hysteresis band.
θ+ 20.5 ◦C Higher end of hysteresis band.
θa 26 ◦C Ambient temperature.
σrel 0.2 Standard deviation of log-normal

distributions as a fraction of the
mean value for R, C and P.

In the rest of the paper we focus on the lower end of the
temperature deadband α(t). The analysis for the higher
end β(t) is analogous. Our analysis is limited to values
of α(t) to 0 ≤ α(t) ≤ (θ+ − θ−)/2, which ensures
the regulated temperature stays within end-user comfort
margins with a maximum reduction in deadband width
to half the original width. This limit places an upper
bound on the frequency of compressors’ on/off cycling,
which increases as the hysteresis deadband is narrowed.
An overly narrow hysteresis deadband may induce cycling
frequencies detrimental to AC compressors. For other
TCLs, such as electric water heaters, however, such limits
may be more flexible.



3. MODEL FOR AGGREGATE DEMAND RESPONSE
TO THERMOSTAT DEADBAND WIDTH CHANGES

This section develops a compact mathematical model of
the dynamic aggregate demand response of a population
of ACs to a simultaneous step reduction in their hysteresis
deadband widths. This model, aimed to be used in model-
based DLC design, provides a dynamic mapping between
the control input α(t) and the resulting normalised de-
mand of the population D(t).

We follow the modelling approach used in Perfumo et al.
(2012) for the response of the population to a step in tem-
perature set-point, in this paper adapted to the response
to a step in the lower end of the hysteresis deadband α(t).

We make the following assumptions (Perfumo et al., 2012):

H.1 All the ACs have the same set-point temperature θr =
(θ− + α + θ+)/2 and the same hysteresis deadband
width θ+ − θ− − α, where 0 ≤ α ≤ (θ+ − θ−)/2.

H.2 The ACs operate independently of each other ac-
cording to the dynamics (1), (2), with parameter C
(thermal capacitance) log-normally distributed in the
population. The parameters R and P are the same for
all the ACs in the population.

H.3 Each AC operates at 50% duty cycle, which implies
that RP = 2(θa − θr) for each device.

H.4 The regulated temperature swing is much smaller
than the difference between ambient and set-point
temperatures: θ+ − θ− ≪ |θa − θr|. This implies that
the rate at which the temperature changes in each AC
is approximately constant, so that the temperature
shows a triangular waveform.

H.5 The population demand is at steady state, with
temperatures uniformly distributed in the interval
[θ−, θ+] before the step change α is applied.

While in rigour these assumptions clearly restrict the
system under consideration, the resulting model tolerates
their relaxation to a high degree, as we will illustrate below
by simulation. This makes the proposed model appealing
for robust model-based DLC design—see Perfumo et al.
(2013) for a comprehensive sensitivity analysis of the
model developed in Perfumo et al. (2012).

The following lemma gives a characterisation of the popu-
lation normalised aggregate demand response D(t) as the
probability that a randomly chosen AC in the population
is turned ON at a given time. The motivating idea be-
hind such probabilistic characterisation (already used in
Malhame and Chong, 1985) is that for a sufficiently large
distributed population, such probability approximates the
proportion of ACs with compressors switched ON at a
given time, which corresponds to the normalised demand
D(s) defined in (3).

To state this lemma introduce the variable

xi(t) ,

∫

|θ̇i(t)|dt,
which under Assumption H.4 may be expressed as

xi(t) ≈ x0
i + vit, (4)

In (4) the initial condition x0
i is a function of the temper-

ature of the i-th AC, θi(0) at time t = 0, and vi is the rate
at which the temperature θi changes. By virtue of H.4,
such rate is approximated by a constant as

|θ̇i(t)| ≈ vi = (θa − θr)/CiR. (5)

The variable xi(t) may be seen as an “unwrapped” map
of the temperature θi(t), which converts the triangular
waveform into a ramp.

Assuming that the population is sufficiently large, from
(5) we now extend such “unwrapped” temperature to a
continuous random process, namely,

x(t) = x0 + vt,

where x0 and v = (θa− θr)/CR are now random variables
that describe the distribution of initial temperatures and
temperature rates in the population. It may be shown (as
in Perfumo et al., 2012) that under Assumptions H.1-H.5
v is log-normally distributed with mean µv and standard
deviation σv that satisfy

σrel =
σv

µv
=

σC

µC
. (6)

Lemma 1. (Probabilistic model for D(t)). Consider a suf-
ficiently large population of ACs operating in steady state
under Assumptions H.1 to H.5. Suppose that at time
t = 0 the lower temperature boundary of the hysteresis
deadbands of all ACs in the population are simultaneously
raised by α [◦C]. Then, the normalised aggregate demand
response D(t) for t > 0 may be approximated by

D(t) ≈ 1− α

2(1 + α)

(

1 + erf

[

log [(1 − α)/µx(t)]√
2σrel

])

+
1

2

∞
∑

k=2

(−1)k+1 erf

[

log [(k(1 − α))/µx(t)]√
2σrel

]

, (7)

where erf[·] is the Gauss error function, and µx(t) =
µx(0)+µvt is the mean of the values x(t) and σrel is given
by (6).

Proof. The proof follows by adapting the proof of Corol-
lary 1 in Perfumo et al. (2012) from an initial distribution
for a deadband width modified by 1− α.

Lemma 1 differs from its correlate in Perfumo et al.
(2012, Corollary 1) in the dependency on the candidate
control variable α in (7). Corollary 1 in Perfumo et al.
(2012) showed that the transients in D(t) due to a step
change in temperature set-points display oscillations with
period T ≈ 2/µv, assuming deadbands with unitary width,
H = 1. Following similar steps, it may be shown from
Lemma 1 that the period of the oscillations in D(t) due to
a step reduction α◦C in hysteresis deadband width is also
a function of α in the present case, namely,

T ≈ 2H/µv = 2(1− α)/µv. (8)

Equation (8) indicates the presence of a nonlinearity in
the response D(t) with respect to the input α. This
nonlinear dependency is explicit in the following second-
order analytic model approximation of D(t), which is the
main result of the paper.

Proposition 2. (A second-order model for D(t)). Under the
assumptions of Lemma 1, the aggregate demand response
D(t) of a population of ACs to a step change α◦C in
the lower boundary of the hysteresis deadband is approx-
imated by the output y(t) of the second-order system



ẋ1 = −2f1(α)x1 − f2(α)x2 + α,

ẋ2 = x1,
(9)

y(t) = h
(

g1(α)x1 + g2(α)x2

)

+ (1− α)Dss(θr, 1), (10)

where h(·) is the saturation function h(z) = 0, if z ≥ 0
and h(z) = −z otherwise, and

f1(α) =
µv| log(r(α))|

1− α
;f2(α) = f1(α)

2 + µ2
vπ

2/(1− α)2

g2(α)

f2(α)
=

[(1− α)Dss(θr, 1)−Dss(θr + 0.5α, 1− α)]

α
;

g1(α) =
[

f1(α)− πµv/
(

(1− α)
√

r(α)
)

]

g2(α)/f2(α),

r(α) =
| erf

(

1−α
1−α+(2−α)

√
2σrel

)

− 1
2 |

| erf
(

1−α
1−α+α

√
2σrel

)

− 1
2 |

,

µv = (θa − θr)(1 + σ2
rel)/RµC , and

Dss(θ,H) =

(

1 +
log(1 + H

θa−θ−H/2 )

log(1 + H
PR+θ−θa−H/2 )

)−1

.

Proof. Due to space limitations we omit the proof, which
follows that for (Perfumo et al., 2012, Corollary 2), but
using the envelope bound for D(t) in Lemma 1. ✷

Proposition 2 characterises the aggregate demand response
of a population of ACs as the dynamic response of a
second-order time-invariant model parametrized by the
population distributed physical parameters. As in the case
of control by set-point offsets (Perfumo et al., 2012), such
low-order model for aggregate demand dynamics may be
used very effectively for transient analysis and model-
based DLC design (Braslavsky et al., 2013).

For example, for a fixed value of α the model (9) is an
underdamped linear system with characteristic polynomial
s2 + 2ξ(α)ω(α)s + ω2(α). The duration of transients in
aggregate demand response to a step reduction α in
deadband width may then be estimated using the well-
known rule-of-thumb formula for the settling time in the
steps response of a second order LTI system (e.g., Franklin
et al., 2006 §3.4.3)

ts(α) = 4.6/ξ(α)ω(α), (11)

where here the damping ratio ξ(α) = f1(α)/ω(α) and

underdamped natural frequency ω(α) =
√

f2(α) are
parametrized by the size of the step α — a main difference
with the response to steps in temperature set-point (Per-
fumo et al., 2012, Corollary 2), where they are invariant.

Table 2 shows the values assumed by the nonlinear coef-
ficients of the model used to obtain the responses shown
in Figure 1. This Figure shows the response of the model
computed from Proposition 2 for two values of α together
with the corresponding simulated responses of 10,000 ACs,
each independently operating according to (1), (2), and
with physical parameters distributed as shown in Table 1.
We can see how closely the computed model can cap-
ture the dominant dynamics in the simulated aggregate
response. Using (11) and the values computed on Table 2
we can estimate the settling times of the responses shown
in Figure 1 as ts = 418 for α = 0.1, and ts = 219 for
α = 0.4, which are in very close agreement with those of
the simulated transients in the plots.

Table 2. Values of the nonlinear functions
f1(α), f2(α), g1(α) and g2(α) in Proposition 2

to generate the responses in Figure 1.

α f1(α) f2(α) g1(α) g2(α) d

0.1 0.011 0.0013 0.021 −6× 10−4 0.5
0.4 0.021 0.0032 0.035 −14× 10−4 0.5

Note that the responses simulated using (1), (2) are not
restricted by Assumptions H.1 to H.5 used to derive
the model (e.g., all R,P and C are distributed), which
illustrates the robustness of the model in Proposition 2.
Also, as may be checked, the nonlinearities on α in the
model given by Proposition 2 are smooth and have limited
range for the domain of values of α considered, which
makes the proposed model amenable to a range of practical
model-based control design techniques, such as linearised
and gain-scheduling feedback designs (e.g., Khalil, 2002).
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Fig. 1. Normalised power demand D for 10,000 simulated
ACs vs. model y(t) in (9)-(10) for α = 0.1 and α = 0.4.

A special characteristic of the responses to steps in α(t)
observed in Figure 1 is that immediately after the step
there is a period where the demand stays constant for a
period of time. This is not observed in the responses to
steps to set-point offsets, where aggregate demand drops
instantaneously and then continues to gradually drop until
it reaches a minimum (Perfumo et al., 2012).

These initial flat periods in the responses to steps in
α(t) may be explained by analysing the distribution of
temperatures of on and OFF ACs before and immediately
after the step, which are schematically shown in Figure 2.
Figure 2(a) (before the step) shows the population in
steady state with ON and OFF ACs uniformly distributed
along the regulation deadband. Figure 2(b) shows the
distribution of ON and OFF ACs immediately after the
step. We can see that all the ACs with temperatures
smaller than θ− + α at the step time simultaneously turn
OFF, which causes an instantaneous drop in demand. For
a period of time the number of ACs turning ON balances
that of ACs turning OFF, which explains the constant
period after the step. This period ends when the vertical
arm of the “L” shaped histogram of OFF ACs reaches the
upper deadband limit θ+, at which point there will be more



ACs turning ON than turning OFF, and hence the demand
will start to rise. Note that as time goes by, the OFF
histogram in Figure 2(b) will lose its “boxed L” shape, as
the heterogeneity in the population causes the histograms
to converge to their steady- state distribution (which is
why we observe decaying oscillations in the response).

(a) Before step (b) After step

Fig. 2. Temperature distribution before and after a step in
α to narrow deadband from [θ−, θ+] to [θ− + α, θ+].

We follow this analysis to obtain a theoretical upper bound
for the maximum amount of energy that may be released
by manipulating aggregate demand through offsets in α.

4. THEORETICAL UPPER BOUND ON THE
MAXIMUM AMOUNT OF RELEASED ENERGY

As mentioned earlier, manipulation of α can only shape
a limited amount of aggregate energy for a given popu-
lation. We now obtain an analytic quantification of such
maximum energy limit. This upper bound is obtained by
considering the case of a homogeneous population of ACs,
namely, consisting of all identical devices

Our analysis focuses on the distributions of on/off ACs
immediately after the step change in α. Such distributions
are illustrated in Fig. 2(b) over temperatures, and in Fig. 3
over the “unwrapped” temperature x(t). If Dss(θref ) rep-
resents the steady state value of the aggregate demand
response before the step change, we see that the demand
instantaneously drops to (1− α)Dss(θref ) since only (1−
α)% of the ACs are on. Subsequently, the same number
of ACs turn ON and OFF until the tall part of the “L”
shaped histogram of OFF ACs reaches 2(1 − α), which
causes the flat period in the aggregate demand response
after the initial instantaneous drop, as seen in Figure 1.

0 1- 2(1-   ) 3(1-   ) x(0 )

ON/OFF ON

interval

OFF

interval
ON
OFF

+� ��

�

Fig. 3. Distribution of x(0+) (following a step change at
t = 0 in lower temperature of hysteresis deadband).

In an ideal homogeneous population, the histogram of
Fig. 3 keeps its shape and moves to the right with the
constant speed of µv, which makes this flat period equal
to

T0 = (1− α)/µv. (12)

As the tall part of the “L” shaped histogram of OFF
ACs enters into the ON interval [2(1 − α), 3(1 − α)], the
demand linearly rises until it completely located within
that interval. The rising time for the ideal homogeneous
population equals to α/µv. The demand stays at this
maximum for a time (1 − 2α)/µv, until the tall part of
the “L” shaped histogram of OFF ACs enters into the
OFF interval [3(1 − α), 4(1 − α)], which causes the linear
reduction in the demand. Such kind of oscillation continues
with period of 2(1−α)/µv as in (8) and should be centred
around the final steady state value of Dss(θref + α/2).
Therefore, the maximum value of the aggregate demand
in the homogeneous population is

Dmax = 2Dss(θref + 0.5α, 1− α) − (1− α)Dss(θref , 1).

A schematic demand response of an ideal homogeneous
population schematically plotted in Fig. 4.

tt0 t0 +
(1−α)
µv

0

D(t)

Dmax

(1− α)Dss(θref)

Dss(θref)

Dss(θref +
α
2
)

t0 +
1
µv

t0 +
2(1−α)

µv

E0(α)

Fig. 4. Typical aggregate power demand response of an
ideal homogeneous population for α ∈ [0, 0.5].

To compare the released energy for different populations,
we compute the total amount of released energy as

E(t;α) = Eσrel
(α) + ∆D t, (13)

where Eσrel
(α) is the whole amount of released energy

with respect to the steady state value of Dss(θref + α/2)
and ∆D = Dss(θref , 1) − Dss(θref + 0.5α, 1 − α) for a
distributed population characterised by σrel, for a given
value of α. Equation (13) allows us to quantify the amount
of energy released in a way that does not diverges with
time, as would occur if the integration were done with
respect to the initial value before applying the step, i.e.,
Dss(θref , 1) since Dss(θref + 0.5α, 1− α) < Dss(θref , 1).

Since ∆D t in (13) is invariant for different populations,
we only need the first term for comparison. For an ideal
homogeneous population, E0 is the surface of the shaded
trapezoid shown in Fig. 4 and may be computed as

E0(α) = ((4− 3α)[αDss(θref , 1)−∆D]) /4µv. (14)

In a heterogeneous population, the histogram in Fig. 3
loses its polygon shape as time evolves, which causes
the demand response to smoothly oscillate and eventually
settle down to a new steady-state value Dss(θref + α/2).
Fig. 5 plots equation (14) per AC (thin blue line) as
well as the simulated values for the populations of ACs
with different levels of heterogeneity. It appears that the
homogeneous response is an upper bound for all cases and



the less the heterogeneity of the population, the less the
distance to the computed upper bound.
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Fig. 5. Theoretical normalised upper bound (14) per AC
with P = 6KW versus simulated Eσrel

(α) for σrel =
0.05, 0.1, 0.2, when µv = 0.83 and Dss(θref , 1) = 0.5
based on the parameters in Table 1.

The analysis done in this section illustrates how one
could quickly determine the potential kW and kWh that
a population could deliver by DLC by deadband width
manipulation. For example, for a population of 1,000
houses with physical characteristics as per Table 1 and
a coefficient of performance value of 2.5, the maximum
power that could be released for α = 0.5 is 600 kW and
during the first trough in the oscillations (which lasts for
about an hour), and we can deliver at most 400 kWh.

5. CONCLUSIONS

Manipulating the hysteresis boundaries of air conditioners
allows to alter their power profile without violating defined
end-use comfort constraints. We have developed a second-
order model of the power response of a population of air
conditioners to a common step change in one of the bound-
aries of the hysteresis band. Simulation results indicate
that our model successfully captures this response.

Interestingly, the parameters of our proposed model an-
alytically depend not only on the physical characteris-
tics of the population, but also on the value of the step
change in deadband width. This dependency, however, is
well-behaved and amenable by a range of control design
techniques. This means that the new control input α can
be used to shape the aggregated power demand transient
response and hence, could be a good candidate for DLC.

The proposed model requires knowledge of the distribu-
tions of physical parameters in the population, which could
be obtained from statistical surveys, or inferred using the
proposed model structure and measured data. The latter
is under current development by the authors.

A caveat of the proposed DLC approach is that it in-
herently changes the compressor cycling, which may be
detrimental to the equipment if taken to an overly high

frequency. It could be argued that demand response events
only happen occasionally and thus the impact of the life
cycle of the compressor would be small, although ex-
periments should be carried to assess this impact more
precisely.

The relative simplicity of the proposed model makes it
practical in model-based DLC design. The resulting con-
trol strategy, which can manipulate power without comfort
penalties, offers new avenues to overcome one of the main
obstacles for using air conditioners for demand response:
end-user impact.
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